| |

RIT Researchers Integrate Smart Tech into Material Handling Systems

RIT Forklift RightOfWay400x275

July 15, 2022

Researchers at Rochester Institute of Technology are developing an intelligent materials handling system for warehouses that integrate smart technologies, including lidar sensors and artificial intelligence. An example of the research includes industrial robots that will be smart enough to know which one has the right of way in a busy aisle.

With supply chain challenges brought on by the pandemic and increased demands for e-commerce, technology can provide the support businesses need to improve productivity, efficiency, and safety in a warehouse setting, the researchers said.

“This is one area where robotics and autonomous material handling can help,” said Michael Kuhl, professor of industrial and systems engineering in RIT’s Kate Gleason College of Engineering. “Robots can work longer periods of time — not necessarily to replace jobs, but on some of the manual, non-value-added tasks. It means a change of focus of jobs, with people needed to design and maintain fleets of vehicles and robots.”

Kuhl and the project team received a grant for “Effective and efficient driving for material handling,” a one-year, $300,000 project sponsored by The Raymond Corp. It advances earlier work with the company that established task selection and path planning of individual autonomous mobile robots (AMRs).

New work focuses on advanced avoidance and communication strategies for multiple robots and humans in the warehouse environment.

In warehousing operations, there is often a mix of autonomous and human-operated equipment. Avoidance strategies need to be integrated with task options, path planning, and recognition of multiple robots able to communicate with one another in real time, and to recognize humans who also will be interacting in the warehouse space.

“We have information about localization, the different types of sensors that we use within the warehouse to try to identify where the robots are located, and the actual movement of the robot,” said Kuhl. “Can they plan to get from their current location to their destination safely and efficiently? They can have a short path, but they still need to avoid other robots and people.”

Using deep neural network strategies, the system components are trained to make specific, sequenced decisions based on common tasks, but also infrequent or unusual actions that might occur in the warehouse environment.

The team said they are also studying the communication networks within the warehouse — Wi-Fi and cellular network technology functions — as viable solutions. New standards for cellular technologies permit increased individual cellular communication between individual devices, Kuhl said.

“In terms of people and vehicles interacting, could we take advantage of the sensors of multiple vehicles moving around the warehouse?” he said. “If a vehicle is coming down one path, and it sees a person or another vehicle coming out of an aisle, can they communicate and make a decision about what to do next? Who has the right of way?”

The team said robots will be able to react.

In field experiments at Simcona Electronics Corp., a Rochester-based company that sources and procures electrical and mechanical components for manufacturing, the team tests the robotic technology in its 50,000-square-foot facility.

“We needed the real setting to be able to do this work and to move it forward. They provide an extremely valuable resource for us,” said Kuhl. He has has been working with campus partners Amlan Ganguly, associate professor and department head, and Andres Kwasinksi, professor, both in the computer engineering department in RIT’s Kate Gleason College of Engineering; and Clark Hochgraf, associate professor in the electrical and computer engineering technology department in RIT’s College of Engineering Technology. Also participating on the project team is Maojia Li, a recent RIT engineering doctoral graduate.


Robotics World News

  • Raise Robotics Raises $2.2M in Seed Round Funding

    Raise Robotics Raises $2.2M in Seed Round Funding

    Raise Robotics, which develops robotic equipment for construction sites, has announced it raised $2.2 million in a pre-seed funding round (reported by Construction Dive). The company is currently providing fenestration and mass timber contractors with semi-autonomous equipment that completes bracket layout, installment and verification four times faster than standard methods. “Our mission at Raise is… Read More…

  • Scythe Robotics Raises $42M for Commercial Autonomous Mower

    Scythe Robotics Raises $42M for Commercial Autonomous Mower

    Colorado-based Scythe Robotics, which develops advanced commercial-grade autonomous systems for professional landscapers, has announced it raised $42 million in Series B funding. The company said it will use the funding to help meet demand for more than 7,500 reservations for its fully electric, fully autonomous M.52 mower. With the latest financing, Scythe Robotics has raised… Read More…


Products for Robots & Cobots

  • Celera Motion Introduces the World’s Smallest Servo Drives

    Celera Motion Introduces the World’s Smallest Servo Drives

    Celera Motion, a business unit of Novanta Inc., announced the launch of two of the world’s smallest servo drives, the Denali Series. Denali is the latest addition to Celera Motion’s line of premium-performance Ingenia servo drives. Denali offers hardware architecture as well as optimized power management, with a minimum standby power consumption of down to 1.2 W. The servo drives… Read More…

  • Heiland Electronics Introduces Mini I/O Connectors for Fast Speeds and Easy Field Installs

    Heiland Electronics Introduces Mini I/O Connectors for Fast Speeds and Easy Field Installs

    Heilind Electronics, a leading global distributor of electronic components and authorized distributor for TE Connectivity, offers the Mini I/O Cat6A connector as part of its full line of TE ethernet products. TE Industrial’s Mini I/O connectors eliminate the need for special tools to create a fast and secure wire-to-wire or wire-to-board connection. The mini I/O… Read More…